BIRZET UNNERSITY
 BIRZEIT UNIVERSITY
 Faculty of Engineering Electrical Engineering Department
 Signals and Systems - ENEE334
 Final Exam

Instructors: Mr. Ashraf Al-Rimawi
Jan.17, 2013
Problem 1 (20 pts):
For the following systems
a. $y(t)=x(t+2) \sin (\omega t+2), \omega \neq 0$
b. $y(t)=\int_{t}^{t+1} x(\lambda) d \lambda$
c. $y(t)=\sqrt{x^{2}(t)}$
d. $y(t)= \begin{cases}0 & x(t)<0 \\ x(t)+x(t-2) & x(t) \geq 0\end{cases}$

Determine whether the systems are linear, time-invariant, and causal? Justify your answers.

Problem 2 (20 pts):
Consider the following continuous-time periodic signal $x(t)$,

Fig 1
Is filtered with a filter of impulse response $h(t)=\cos (3 \pi t) \operatorname{sinc}(2 t)$ as shown in Fig2

Fig 2
a. Determine the Complex Fourier series coefficient X_{n} of the signal $x(t)$
b. Determine the Trigonometric Fourier series coefficients
c. Sketch the exponential fourier series spectra of the signal $x(t)$
d. For the Linear-Time invariant systems (LTI) shown in Fig 2. Sketch $X(f)$, $H(f)$, and $Y(f)$
e. What is the power of the $x(t)$

Problem 3 (20pts):
A. Consider a system with the relationship of its input and output is given by

$$
y(t)=\int_{0}^{t} e^{-\tau} x(t-\tau) d \tau
$$

1. Find the system impulse response $h(t)$ of the system
2. Determine the output $y(t)$ of the system if the input $x(t)=u(t+1)$
B. Consider the system shown in fig 3 and the spectrum $X(f)$ of an input $x(t)$ is shown in Fig 3

Fig 3
Sketch the spectrum of $Y(f), W(f)$, and $G(f)$
Problem 4 (20 pts):
The signal

$$
x(t)=3+4 \cos (10 \pi t)+5 \cos (14 \pi t)+2 \cos (20 \pi t)
$$

Is sampled at a rate of 30 samples per second. Plot the spectrum of the sampled signal showing all components for $|\mathrm{f}|<80$. Fully explain how $\mathrm{x}(\mathrm{t})$ can be reconstructed from the samples.

Problem 5 (20 pts):
Convolve $h(n T)$ and $x(n T)$ shown in Fig 4

Fiou

